Representability in Second-Order Propositional Poly-Modal Logic
نویسندگان
چکیده
A propositional system of modal logic is second-order if it contains quantifiers ∀p and ∃p, which, in the standard interpretation, are construed as ranging over sets of possible worlds (propositions). Most second-order systems of modal logic are highly intractable; for instance, when augmented with propositional quantifiers, K, B, T, K4 and S4 all become effectively equivalent to full second-order logic. An exception is S5, which, being interpretable in monadic second-order logic, is decidable. In this paper we generalize this framework by allowing multiple modalities. While this does not affect the undecidability of K, B, T, K4 and S4, poly-modal secondorder S5 is dramatically more expressive than its mono-modal counterpart. As an example, we establish the definability of the transitive closure of finitely many modal operators. We also take up the decidability issue, and, using a novel encoding of sets of unordered pairs by partitions of the leaves of certain graphs, we show that the second-order propositional logic of two S5 modalitities is also equivalent to full second-order logic. §
منابع مشابه
Second-order propositional modal logic and monadic alternation hierarchies
We establish that the quantifier alternation hierarchy of formulae of secondorder propositional modal logic (SOPML) induces an infinite corresponding semantic hierarchy over the class of finite directed graphs. This solves an open problem problem of van Benthem (1985) and ten Cate (2006). We also identify modal characterizations of the expressive powers of second-order logic (SO) and monadic se...
متن کاملOn Extensions and Variants of Dependence Logic — A study of intuitionistic connectives in the team semantics setting
Dependence logic is a new logic which incorporates the notion of “dependence”, as well as “independence” between variables into first-order logic. In this thesis, we study extensions and variants of dependence logic on the first-order, propositional and modal level. In particular, the role of intuitionistic connectives in this setting is emphasized. We obtain, among others, the following result...
متن کاملExpressivity of Second Order Propositional Modal Logic
We consider second order propositional modal logic (SOPML), an extension of the basic modal language with propositional quantifiers introduced by Kit Fine in 1970. We determine the precise expressive power of SOPML by giving analogues of the Van Benthem-Rosen theorem and the GoldblattThomason theorem. Furthermore, we show that the basic modal language is the bisimulation invariant fragment of S...
متن کاملA Semantical Analysis of Second-Order Propositional Modal Logic
This paper is aimed as a contribution to the use of formal modal languages in Artificial Intelligence. We introduce a multi-modal version of Second-order Propositional Modal Logic (SOPML), an extension of modal logic with propositional quantification, and illustrate its usefulness as a specification language for knowledge representation as well as temporal and spatial reasoning. Then, we define...
متن کاملOn the Expressive Power of Modal Logics on Trees
Various logical languages are compared regarding their expressive power with respect to models consisting of nitely bounded branching in nite trees The basic multimodal logic with backward and forward necessity operators is equivalent to restricted rst order logic by adding the binary temporal operators since and until we get the expressive power of rst order logic on trees Hence restricted pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Log.
دوره 67 شماره
صفحات -
تاریخ انتشار 2002